A New Algorithm for the Svd of a Long Product of Matrices and the Stability of Products
نویسنده
چکیده
Lyapunov exponents can be estimated by accurately computing the singular values of long products of matrices, with perhaps 1000 or more factor matrices. These products have extremely large ratios between the largest and smallest eigenvalues. A variant of Rutishauser’s Cholesky LR algorithm for computing eigenvalues of symmetric matrices is used to obtain a new algorithm for computing the singular values and vectors of long products of matrices with small backward error in the factor matrices. The basic product SVD algorithm can also be accelerated using hyperbolic Givens’ rotations. The method is competitive with Jacobi-based methods for certain problems as numerical results indicate. Some properties of the product SVD factorization are also discussed, including uniqueness and stability. The concept of a stable product is introduced; for such products, all singular values can be computed to high relative accuracy.
منابع مشابه
A New Mathematical Formulation for Multi-product Green Capacitated Inventory Routing Problem in Perishable Products Distribution Considering Dissatisfaction of Customers
In this paper, we propose a new mathematical model for Capacitated Inventory Routing Problem (CIRP), which considers freshly delivery of perishable products to the customers’ location; otherwise, a reduction in products’ demand may occur. Therefore, we attempt to plan delivering process of products at the right time to avoid extra inventory causing increase in age of products. This ...
متن کاملA meta-heuristic approach supported by NSGA-II for the design and plan of supply chain networks considering new product development
There are many reasons for the growing interest in developing new product projects for any firm. The most embossed reason is surviving in a highly competitive industry which the customer tastes are changing rapidly. A well-managed supply chain network can provide the most profit for firms due to considering new product development. Along with profit, customer satisfaction and production of new ...
متن کاملComputing the Matrix Geometric Mean of Two HPD Matrices: A Stable Iterative Method
A new iteration scheme for computing the sign of a matrix which has no pure imaginary eigenvalues is presented. Then, by applying a well-known identity in matrix functions theory, an algorithm for computing the geometric mean of two Hermitian positive definite matrices is constructed. Moreover, another efficient algorithm for this purpose is derived free from the computation of principal matrix...
متن کاملAn Algorithm Based on Theory of Constraints and Branch and Bound for Solving Integrated Product-Mix-Outsourcing Problem
One of the most important decision making problems in many production systems is identification and determination of products and their quantities according to available resources. This problem is called product-mix. However, in the real-world situations, for existing constrained resources, many companies try to provide some products from external resources to achieve more profits. In this pape...
متن کاملA New Approach in Strategy Formulation using Clustering Algorithm: An Instance in a Service Company
The ever severe dynamic competitive environment has led to increasing complexity of strategic decision making in giant organizations. Strategy formulation is one of basic processes in achieving long range goals. Since, in ordinary methods considering all factors and their significance in accomplishing individual goals are almost impossible. Here, a new approach based on clustering method is pro...
متن کامل